Ⅲ型等溫線:在整個壓力范圍內(nèi)凸向下,曲線沒有拐點B
在憎液性表面發(fā)生多分子層,或固體和吸附質(zhì)的吸附相互作用小于吸附質(zhì)之間的相互作用時,呈現(xiàn)這種類型。例如水蒸氣在石墨表面上吸附或在進行過憎水處理的非多孔性金屬氧化物上的吸附。在低壓區(qū)的吸附量少,且不出現(xiàn)B點,表明吸附劑和吸附質(zhì)之間的作用力相當(dāng)弱。相對壓力越高,吸附量越多,表現(xiàn)出有孔充填。有一些物系(例如氮在各種聚合物上的吸附)出現(xiàn)逐漸彎曲的等溫線,沒有可識別的B點,在這種情況下吸附劑和吸附質(zhì)的相互作用是比較弱的。
Ⅳ型等溫線:低P/P0區(qū)曲線凸向上,與Ⅱ型等溫線類似。在較高P/P0區(qū),吸附質(zhì)發(fā)生毛細(xì)管凝聚,等溫線迅速上升。當(dāng)所有孔均發(fā)生凝聚后,吸附只在遠(yuǎn)小于內(nèi)表面積的外表面上發(fā)生,曲線平坦。在相對壓力1接近時,在大孔上吸附,曲線上升。
由于發(fā)生毛細(xì)管凝聚,在這個區(qū)內(nèi)可觀察到滯后現(xiàn)象,即在脫附時得到的等溫線與吸附時得到的等溫線不重合,脫附等溫線在吸附等溫線的上方,產(chǎn)生脫附滯后(adsorptionhysteresis),呈現(xiàn)滯后環(huán)。這種脫附滯后現(xiàn)象與孔的形狀及其大小有關(guān),因此通過分析吸脫附等溫線能知道孔的大小及其分布。
Ⅴ型等溫線的特征是向相對壓力軸凸起。與Ⅲ型等溫線不同,在更高相對壓力下存在一個拐點。Ⅴ型等溫線來源于微孔和介孔固體上的弱氣-固相互作用,微孔材料的水蒸汽吸附常見此類線型。
Ⅵ型等溫線以其吸附過程的臺階狀特性而著稱。這些臺階來源于均勻非孔表面的依次多層吸附。液氮溫度下的氮氣吸附不能獲得這種等溫線的完整形式,而液氬下的氬吸附則可以實現(xiàn)。